405 research outputs found

    Operator analysis of physical states on magnetized T2/ZNT^{2}/Z_{N} orbifolds

    Get PDF
    We discuss an effective way for analyzing the system on the magnetized twisted orbifolds in operator formalism, especially in the complicated cases T2/Z3T^{2}/Z_{3}, T2/Z4T^{2}/Z_{4} and T2/Z6T^{2}/Z_{6}. We can obtain the exact and analytical results which can be applicable for any larger values of the quantized magnetic flux M, and show that the (non-diagonalized) kinetic terms are generated via our formalism and the number of the surviving physical states are calculable in a rigorous manner by simply following usual procedures in linear algebra in any case. Our approach is very powerful when we try to examine properties of the physical states on (complicated) magnetized orbifolds T2/Z3T^{2}/Z_{3}, T2/Z4T^{2}/Z_{4}, T2/Z6T^{2}/Z_{6} (and would be in other cases on higher-dimensional torus) and could be an essential tool for actual realistic model construction based on these geometries.Comment: 41 pages, 1 figur

    Classification of three-generation models on magnetized orbifolds

    Get PDF
    We classify the combinations of parameters which lead three generations of quarks and leptons in the framework of magnetized twisted orbifolds on T2/Z2T^2/Z_2, T2/Z3T^2/Z_3, T2/Z4T^2/Z_4 and T2/Z6T^2/Z_6 with allowing nonzero discretized Wilson line phases and Scherk-Schwarz phases. We also analyze two actual examples with nonzero phases leading to one-pair Higgs and five-pair Higgses and discuss the difference from the results without nonzero phases studied previously.Comment: 28 pages (main body and references) + 65 pages (full list of classification), 22 tables (v1); typos corrected, problem in sentence fixed (v2

    STM observation of the quantum interference effect in finite-sized graphite

    Full text link
    Superperiodic patterns were observed by STM on two kinds of finite-sized graphene sheets. One is nanographene sheets inclined from a highly oriented pyrolitic graphite (HOPG) substrate and the other is several-layer-thick graphene sheets with dislocation-network structures against a HOPG substrate. As for the former, the in-plane periodicity increased gradually in the direction of inclination, and it is easily changed by attachment of a nanographite flake on the nanographene sheets. The oscillation pattern can be explained by the interference of electron waves confined in the inclined nanographene sheets. As for the latter, patterns and their corrugation amplitudes depended on the bias voltage and on the terrace height from the HOPG substrate. The interference effect by the perturbed and unperturbed waves in the overlayer is responsible for the patterns whose local density of states varies in space.Comment: 11 pages; 2 figures; accepted for publication in J. Phys. Chem. Solids; ISIC1

    Raman spectroscopic studies on the ferroelectric soft mode in SnxSr1-xTiO3

    Get PDF
    The Raman spectra of novel ferroelectric ceramics SnxSr1-xTiO3 (x = 0.1, 0.05 and 0.02) were obtained to clarify the mechanism of their ferroelectric phase transitions. Two transverse-optic modes in the ferroelectric phase showed softening toward the ferroelectric transition temperature. A comparison of the spectra obtained for SnxSr1-xTiO3 with the spectrum of PbxSr1-xTiO3 facilitated the assignment of the observed modes under the assumption of the ferroelectric phase in C4v1 symmetry. However, several peaks violating the Raman selection rules were observed, suggesting the emergence and growth of polar regions even in the paraelectric phase

    4-Hydroxy-2-Nonenal-Modified Glyceraldehyde-3-Phosphate Dehydrogenase Is Degraded by Cathepsin G in Rat Neutrophils

    Get PDF
    Degradation of oxidized or oxidatively modified proteins is an essential part of the antioxidant defenses of cells. 4-Hydroxy-2-nonenal, a major reactive aldehyde formed by lipid peroxidation, causes many types of cellular damage. It has been reported that 4-hydroxy-2-nonenal-modified proteins are degraded by the ubiquitin-proteasome pathway or, in some cases, by the lysosomal pathway. However, our previous studies using U937 cells showed that 4-hydroxy-2-nonenal-modified glyceraldehyde-3-phosphate dehydrogenase is degraded by cathepsin G. In the present study, we isolated the 4-hydroxy-2-nonenal-modified glyceraldehyde-3-phosphate dehydrogenase-degrading enzyme from rat neutrophils to an active protein fraction of 28 kDa. Using the specific antibody, the 28 kDa protein was identified as cathepsin G. Moreover, the degradation activity was inhibited by cathepsin G inhibitors. These results suggest that cathepsin G plays a crucial role in the degradation of 4-hydroxy-2-nonenal-modified glyceraldehyde-3-phosphate dehydrogenase
    corecore